Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. med. biol. res ; 51(6): e7061, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-889105

RESUMO

Andrographolide (ANDRO) has been studied for its immunomodulation, anti-inflammatory, and neuroprotection effects. Because brain hypoxia is the most common factor of secondary brain injury after traumatic brain injury, we studied the role and possible mechanism of ANDRO in this process using hypoxia-injured astrocytes. Mouse cortical astrocytes C8-D1A (astrocyte type I clone from C57/BL6 strains) were subjected to 3 and 21% of O2 for various times (0-12 h) to establish an astrocyte hypoxia injury model in vitro. After hypoxia and ANDRO administration, the changes in cell viability and apoptosis were assessed using CCK-8 and flow cytometry. Expression changes in apoptosis-related proteins, autophagy-related proteins, main factors of JNK pathway, ATG5, and S100B were determined by western blot. Hypoxia remarkably damaged C8-D1A cells evidenced by reduction of cell viability and induction of apoptosis. Hypoxia also induced autophagy and overproduction of S100B. ANDRO reduced cell apoptosis and promoted cell autophagy and S100B expression. After ANDRO administration, autophagy-related proteins, S-100B, JNK pathway proteins, and ATG5 were all upregulated, while autophagy-related proteins and s100b were downregulated when the jnk pathway was inhibited or ATG5 was knocked down. ANDRO conferred a survival advantage to hypoxia-injured astrocytes by reducing cell apoptosis and promoting autophagy and s100b expression. Furthermore, the promotion of autophagy and s100b expression by ANDRO was via activation of jnk pathway and regulation of ATG5.


Assuntos
Animais , Camundongos , Astrócitos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Diterpenos/farmacologia , Subunidade beta da Proteína Ligante de Cálcio S100/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Astrócitos/fisiologia , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Fatores de Tempo , Transfecção
2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 104-109, 2008.
Artigo em Chinês | WPRIM | ID: wpr-284633

RESUMO

Isoflurane, a commonly used inhaled anesthetic, induces apoptosis in rat pheochromo-cytoma cells (PC12) in a concentration- and time-dependent manner with unknown mechanism. We hypothesized that isoflurane induced apoptosis by causing abnormal calcium release from the endo-plasmic reticulum (ER) via activation of inositol 1,4,5-trisphosphate (IP3) receptors. Alzheimer's pre-senilin-1 (PS1) mutation increased activity of IP3 receptors and therefore rendered cells vulnerable to isoflurane-induced cytotoxicity. Sevoflurane and desflurane had less ability to disrupt intraceUular calcium homeostasis and thus being less potent to cause cytotoxicity. This study examined and com- pared the cytotoxic effects of various inhaled anesthetics on PC12 cells transfected with the Alz- heimer's mutated Psi (L286V) and the disruption of intracellular calcium homeostasis. PC12 cells transfected with wild type (WT) and mutated PS1 (L286V) were treated with equivalent of 1 MAC of isoflurane, sevoflurane and desflurane for 12 h. MTT reduction and LDH release assays were per- formed to evaluate cell viability. Changes of calcium concentration in cytosolic space ([Ca2+]c) were determined after exposing different types of cells to various inhalational anesthetics. The effects of IP3 receptor antagonist xestospongin C on isoflurane-induced cytotoxicity and calcium release from the ER in L286V PC12 cells were also determined. The results showed that isoflurane at 1 MAC for 12 h induced cytoxicity in L286V but not WT PC12 cells, which was also associated with greater and faster elevation of peak [Ca2+]c in L286V than in the WT cells. Xestospongin C significantly amelio- rated isoflurane cytotoxicity in L286V cells, as well as inhibited the calcium release from the ER in L286V cells. Sevoflurane and desflurane at equivalent exposure to isoflurane did not induce similar cytotoxicity or elevation of peak [Ca2+]c in L286V PC12 cells. These results suggested that isoflurane induced cytoxicity by partially causing abnormal calcium release from the ER via activation of IP3 receptors in L286V PC12 cells. Sevoflurane and desflurane at equivalent exposure to isoflumne did not induce similar elevation of [Ca2+]c or neurotoxicity in PC12 cells transfected with the Alzheimer's PS1 mutation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA